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Fractal fluctuations in quantum integrable scattering
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We theoretically and numerically demonstrate that completely integrable scattering processes may exhibit
fractal transmission fluctuations, due to typical spectral properties of integrable systems. Similar properties also
occur with scattering processes in the presence of strong dynamical localization, thus explaining recent nu-
merical observations of fractality in the latter class of systems.
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Scattering processes dominated by a statistically large The issue of fractality in the remaining major class of
number of metastable states display reaction rates that ddynamical systems, namely, the integrable ones, has not yet
pend on energy or other control parameters in complicatebeen investigateflO]. This is the main purpose of this pa-
ways. Reaction curvege., curves obtained by plotting cross per. We first identify special statistical properties of reso-
sections versus the relevant parametelsmand statistical hance poles, which afford fractal reaction curves. This we do
description. This approach, originated in nuclear physics, ha§ absolute generality, without assuming integrability or
given rise to the theory of quantum chaotic scattefibiy other special propertigs of the qgantum syst_em. We then ar-
Classical chaotic dynamics plays an important role thereifdue that such properties are optimally exhibited by suitable,
[2], with applications in many fields, including the study of COmPpletely integrable processes, thanks to a well-known ge-
mesoscopic conductance fluctuatigBs neric property of mtegrable systems, that their energy levels

In the presence of complicated reaction curves, a naturaﬁhare some of the properties of a random sequititieWe

guestion is about their fractality. The latter is not meant inuse a textbook scattering problem to confirm our theory with

the strict mathematical sense, but rather as a property to bnumerlcal data. Finally, we note that the same properties are

possibly observed on a wide range of resolution scales. Reﬁfg t%’géc\?\)eo;;gllznc?ﬁ: trlgsalﬁé sotfr(;eng])./ localized systems,
action curves probe the location of resonance poles in the We consider a weakly open quantum system, with scatter-
complex energy plane, so their fluctuation properties—Ing resonances aE —il'./2 and the real energieg, ar-
including fractality—are encoded in the distribution of such zngeq in increasing]; order. The energy dependencé of a typi-
poles. In particular, the lack of smoothness required by fraczy) cross sectioff (E) consists of a smooth background plus

tality can only be produced by resonance poles clustering iR resonant part, which we write in the form
the vicinity of the real energy axis. This excludes fractal

reaction curves in quasiclassical cases when the underlying 2
classical dynamics is completely chaofi@., uniformly hy- T.(E)= 2 c; —i, (1)
perbolig, because the quantum resonances are then concen- i (Ej— E)%+ FJ—Z

trated away from the real axis. This reflects the exponential

decay in time exhibited by such systems over long timewith c; slowly varying withj. We restrict within an energy
scales. A dynamical signature of poles clustering near thénterval (E,—W,E,+ W), and we assume<W<E,, where
real axis is instead slow algebraic decay of the survival probe is the mean level spacing.To perform fractal analysis of the
ability inside the interaction region. On the classical level,graph of T,(E) vs E, we divide the interval E,—W,E,
such slow decay is, in particular, exhibited by systems with a-W) into subintervalsA,, (k=1,2,... M) of equal size
mixed phase space, endowed with a hierarchical structure afec 1/M. Upon each subinterval, we pile up squares of gide
stable island$4]. On such grounds, fractal fluctuations were and denote byN(S) the total number of squares met by the
predicted by Ketzmerick for the quasiclassical transmissiomyraph of T,(E) . Algebraic scalingN(8)«6~ " with f>1

of electrons through mesoscopic cavitié$ This prediction  between scaless,,i,<dmax Signals that in between such
has received numericdb] and experimenta[7] support.  scales, the graph exhibits a fractabx-counting dimension
However, fractal fluctuations have been numerically ob-. In order to determing we compute

served also in two-dimensional tight-binding models of

guantum dots, where the relation to classical dynamics is

unclear[8], and even in models where this relation is irrel- IoglO[M‘lz ak(Tr)}
evant[9], due to strong quantum localization on one hand, logid N(9)] ~ K

and to the absence of significant classical critical structures logyo(6~ 1) log;o(M)

on the other. It therefore appears that fractality of reaction

curves is not strictly associated with critical structures in the o logio{o(T}))
classical phase space. logio(6)
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whereo(T,)=0 is the maximal excursion df,(E) within ~ The following asymptotic formulas can be computed by us-
the kth interval. We next assume the following. First, in the ing Lagrange’s theorem on the inversion of analytic func-
given energy interval, the frequendy(I') of widths less tions:
than T scales likeP(I')~al'l™« at e<I'<T’, with ' the

mean resonance width, and<@&<1. Second, both’; and

E; form uncorrelated sequences. Finally, resonances are
strongly overlapped, in the sense tleat['<W. Then, ate

< 6<T, the fluctuation ofT, in an intervalA, is mostly due _ ﬁvﬁ |02 ( vh

n
to many tiny resonant peaks that are centered inside the in- 510G 1+ ; +0

terval and are narrower thah Every such peak contributes Un
a Lorentzian term in Eq1), and the mean square oscillation
of this term asE ranges inA, is ~ & *P(8) "1/ odP(I')T

h
&)

wherev,=nmw#/L, is the velocity in thenth vertical mode
© _ _of the closed rectangle, ar(’) = 2#2m*m?/L;+v?%/2 are
~1.There arei(6)~e ~6P(5) such peaks; as they contrib- yhe eigenvalues of the closed) billiard. The first term
uteiulgc?[rellzated oscillations, we estimaig(T,))~n(4)  on the right-hand sid&hs) of the second Eq3) is the decay
~e 7767 % Therefore,f=1+a/2 in a rangeénin<é  rate of a classical billiard ball inside the closed rectangle,
<Omax, With Spa~T', and &y, roughly estimated by with velocity v, in they direction, and absorption probabil-
N(Smin) ~ 1, that is, Smin~ (e/a)**~ ). ity at y=*L,/2 equal to the transmission coefficient for a
Fluctuating cross sections may also be generated at fixgslane wave through on & barrier, given byv2(o?+v2) 1.
energy, by varying other parameters, as in the case of mage assuméi<oL, and thereby negled(%/oL,) correc-
netoresistance fluctuations in mesoscopic physics. The aboy¥@ns in Eq.(3). The statistics of real parts of resonances is
analysis carries over to such fluctuations on replacing energen similar to the energy-level statistics of an integrable
by the relevant parameter, provided that the above assum@ystem' with a mean level spacing only different by correc-
tions remain satisfied. N . tions of order {/oL,)* from that of the closed billiarde
The above-described conditions are met in some physi=27%2(L,L,) 1. The correction to the closed billiard levels

Ca”y r6|evant.SiFuat-i0nS. Uncorrelated _Se_quences of energy, Eq (3) lifts possib|e degeneracies due to commensurate
levels are a distinctive feature of generic integrable systemgeometry.

[11]. We then surmise fractal reaction curves for completely |n an energy interval Bg—W,Eq+W), e<W<E,, the
integrable scattering processes, provided they display a slognooth(Thomas-Fermi part of the integrated®(I") distri-
decay, leading to an inverse power-law distributionl@.  pytion is computed from a microcanonical distribution of
We shall presently describe an explicit example of such &jassical billiard trajectories at energy, each with a decay

process. . ; . e =y
We consider the quantum dynamics of a particle of a unitrate 1“7 2(3)_' 1”;'2 quasiclassical .dIStrIB;JtIOI’] has a m.dé@()
mass moving inside the infinite stripsk<L, in the (x,y) :ﬁ‘fz Ly 5/2 ; ang belr/13aves likeal'"™ at smalll’, with a
plane, with tunneling barriers gt= = L,/2. The Hamiltonian =(7Eo/2) "(Lyo/h)™". The same behavior may b% as-
is sumed for the quantal distribution, provided thaf{<o*,
, and thate<I'g . The former condition ensurds"”® behavior
H=— %A +had(y—Ly2)+hady+L,/2). of the quasiclassical distribution in a rangelbfalues com-

parable tol'g . Together with the latter condition, it ensures
that the quasiclassical behavior is observed over a statisti-
cally significant number of resonances. Reflecting generic
properties of energy spectra of integrable systems, the real
parts of resonances, arranged in increasing order, form an
ssentially uncorrelated sequence. At fixed quantum number
, they form an ordered ladder, but the superposition of a

. + - + _ ; large number of different, uncorrelated ladders results in a
tions areug (X,y) = dm(X) 0 (y), bm(x)=exp(2mmxiL,), Poisson-like statistic. On the same grounds we assume un-

+ _A* + i 2_ 1,2
ak (y)z—;A gk)e.prk|y|)+B .(k)exp( ikly), and ZE/4°=k correlated resonance widths too.
+4m me/L,, with + denoting the uppery>L,,;) and the The transmission amplitude at enefjrom the lowerm

lower (y<—L,,) lead, respectively. For giveB>0, there  channel to the uppdrchannel is
are a finite number of open scattering channels labeled by the

We use periodic boundary conditions»t0, x=L,. The
Dirac delta functions enforce additional boundary condi-
tions: dyg(X,y+) —dy(x,y—)=20h"ty(xy) at y=
*=L,/2. The physical model is a rectangular billiard, whence
the particle may escape into semi-infinite leads, by tunnelin
through the two horizontal sides. Ffy|>L,/2 eigenfunc-

integerm, |m|<Int(L (%) *VE/2), and by the lead label K2(E,m)#2
=. The coefficientA™ (k) are related td* (k) by the scat- Sn—1+(B)= S ZEmt ’ — Omi, (4)
tering matrix. Scattering resonances are located at complex o?e? K EMLy 4 [K(E,m)fi+io]
values of energy z,m=Enm—iln/2=2m?m?h2/L2 , _
+K2H212, (n=1,2, . . . ,)wherek, are the complex roots of Where k(E,m)=2Efi~?—4=’m’L,*. A computation
the equations shows that the residue of E(}) at a resonance pole is
_ —iI'/2 at smalll’. Hence, the resonant part of the total trans-
ekly+15ikho 1=0. (2)  mission coefficient

015203-2



FRACTAL FLUCTUATIONS IN QUANTUM INTEGRABLE . ..

97780

RAPID COMMUNICATIONS

PHYSICAL REVIEW E 65 015203R)

=
= 97740
FIG. 1. Total transmission vs flu® at fixed
97700 : : : : energyE=5x 10" (upper plo}, and vs energf
0.0 0.2 0.4 0.6 0.8 1.0 at fixed flux =0 (lower plob, for o=3.5x 10
3500.0 ¢ and o=10% respectively. In both cases=1,
' Ly=2, andL,=0.4. The energy range in the
lower plot is Eg,Eq+W), with E;=5x10" and
~ W=2.5X 10°. Units are arbitrary.
M 3400.0 -
|_
3300.0 — —— ;
5.X10 5.0125 X 10 5.025X 10
E
) A generalization of the above m
T(E)=% |Sm— m+ (E)[%, (5 tigation of parametric fluctuations

(the sum being over all open channels at endgyyhas the
form (1) apart from a slowly varying factor. The smooth part
is «E%?%¢*. Collecting various estimates, we see that at
fil(oLy) <1, A?LZ<W<Ey<o?, EJL,h o 2>1, the
assumptions of our general argument are satisfied, hence, t
graph of T(E) vsE in (Eq—W<E<Ey+ W) should be frac-
tal with dimensionf =4/3, over scales intermediate between

Smin~ 1.863/4Fé/§ and Smax~Te,.

A numerically computed graph Gf(E) is shown in Fig. 1

odel allows for the inves-

. It is obtained by using

boundary conditionss(0,y)=e'?¥(L,,y). This is equiva-
lent to a particle moving on a cylinder, with the axis in the

It;}réeory. At fixed energ¥, the total tr

direction, enclosing a magnetic flux. This problem is still
completely integrable. Replacimg by m— ¢/(2) through-
out the equations derived &i=0 yields the corresponding

ansmission fluctuates as

is varied, in the manner illustrated in Fig.(@pped. The
theory of such fluctuations is completely parallel to the one
we have described for fluctuations vs energy at fixedO.

Resonances depend @0 z, =2z, m(¢), and the complex

values of¢ solving the equationg, (¢)=E define reso-

(lowern. The corresponding fractal analysis is shown in Fig.nance poles in the complekx plane. Omitting computational
2 and fully confirms the theory. In that case, the above estidetails, the real parts of such poles are distributefi@ |
with a mean spacing ,~ w?h\2/E/L,. The distribution of

mates forénin, Smax give 10-° and 18 respectively.
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FIG. 2. Fractal analysis of the graph BfE) vs E shown in the
lower Fig. 1. The meaning of,N(6) is explained in the text. The
straight line corresponds to fractal dimensibs4/3. The inset
shows the autocorrelation-1C(6)/C(0) vs 6. The straight line has

slope 4/3.

their widthsI" , behaves similar td’

42 at smalll';, with a

mean ~ L2l ge,/(8m2%2). Our general discussion is thus
valid for parametric fluctuations, too. In fact, numerical data
shown in Fig. 3 demonstrate the predicted fractal dimension

4/3.
Both for energy dependent and

for parametric fluctuations

we have computed autocorrelations of the fluctuation graphs.
For the case of fluctuations vs energy, such correlations are

defined by

C(6)=(TME)TM(E+6))g,

where TV is obtained fromT by

subtracting a smooth,

slowly varying part, and the average is taken over the
scanned interval of energies. Treatiig")(E) as a stationary
stochastic process, one easily finds that such correlations be-
have at smalb like C(0)—constx 5§27, wherey is the scal-

ing exponent of the rms increment ©{E) over intervals of

length 8: (| T(E+ 8)— T(E)|?)gx 62

015203-3

¥ (note that subtracting

the smooth part does not alter fractional scaligenerally
speaking, the rmmcrements a quite different quantity from
the averagexcursionthat enters the definition of the fractal
dimension. With the present strong statistical

proper-
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' 10 ' The work reported in this paper hinges on the fully gen-
12.0 | = . eral fact, that fractality of scattering fluctuations is, first and
S %0r foremost, a matter of complex level statistics. As in the case
z 10} of real level statisticdclosed systems integrable systems
nor Q 20} ] have special properties in this respect, and we have in fact
% 0| demonstrated fractal reaction curves for a completely inte-
z 100 | g i< . . | grable process. A_few remarks are in order about the rel-
z 40 a0 30 20 10 evance of this finding: . '
85; 10g,,(50) (1)_|r_1 completely mtegrable_ scattering processes, _there is
= a0l ] no mixing of flux between different channels. Similar to
pseudorandomness of energy levels, fractality comes of su-
perimposing nonfractal fluctuation patterns from different,
80 1 uncorrelated channels. Therefore, the nature of the reaction
curves depends on the relative weight assigned to different
channels.
7'0_4,0 30 20 1.0 0.0 (2) The present result may also be relevant to quasiinte-
log,,{50) grable systems, which possess large stable components in

their phase space. Such components may contribute a signifi-

FIG. 3. Fractal analysis of the flux-dependent fluctuationscant set of resonances, produced by tunneling through invari-
shown in the upper Fig. 1. The straight line corresponds=@/3.  ant manifolds, with the statistical properties considered in
The inset shows the correlation scaling exponept-2/3. this paper. Their interplay with critical structures at the bor-
der of the stable regions demands careful analysis.

(3) Uncorrelated energy spectra also occur with fully cha-
otic systems in the regime of strong quantum localization. A
tions is not, in general, a sufficient condition for fractality. prototype system in t_his class is t_he kick_ed rotor, t_he_ guasien-
For instance, correlations in Figs. 2 and in 3 exhibit a 4/ spectrgm (.)f which has a Paisson-like statistic in case of
scaling down to smalb scales below the fractal range. This strong localizatiori 12]. For this class of systems, tiie(dif-

is because they are still determined by the statistics of nalf_erenua) distribution behaves similar to Il/down to very

row, nonoverlapped individual peaks, which do not produceSmall scales|13,14. This explains recent findingd] of

fractality any more. On the other hand, on increasigpr- parametricfractal fluctuations with dimension 3/2, detected
relation functions depart from the predicted fractional behav-" :hefisurvwal probabilityat fixed time, on varying a mag-
ior already at values well within the fractal range, because Jetic Tiux ¢.

larger statistic is needed farcrementgecorded over a finite Support from MURST Research Project “Chaos and Lo-
6 grid to sample the distribution @xcursionsver the same calization in Classical and Quantum Mechanics” is gratefully

ties, the two quantities scale in the same way at srall
2y=2—a, s0 C(8)~C(0)—constx 5*3 as confirmed by
the numerical data. However, fractional scaling of correla

grid. acknowledged.
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